
Energy-aware Topology Control for Wireless Sensor Networks Using
Memetic Algorithms

Andreas Konstantinidis a,b Kun Yang a,∗ Hsiao-Hwa Chen c Qingfu Zhang b

aDepartment Of Electronic Systems Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
bDepartment Of Computer Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

cInstitute of Communications Engineering, National Sun Yat - Sen University, Taiwan

Abstract

Cost-effective topology control is critical in wireless sensor networks. While much research has been carried out in this
aspect using various methods, no attention has been made on utilizing modern heuristics for this purpose. This paper
proposes a memetic algorithm-based solution for energy-aware topology control for wireless sensor networks. This
algorithm (called ToCMA), using a combination of problem-specific light-weighted local search and genetic algorithm,
is able to solve the minimum energy network connectivity (MENC) this NP-hard problem in an approximated manner
that performs better than the classical minimum spanning tree (MST) solution. The outcomes of ToCMA can also
be utilized for various network optimization and fault-tolerant purposes.
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1. Introduction

Wireless sensor networks have attracted a phe-
nomenon of research recently due to its ability of
collecting data in hostile environment and reporting
it back to a sink [1]. This ability brings great impact
on different walks of people’s life. Wireless sensor
networks face several challenges with the most sig-
nificant one being the energy consumption. Many
protocols have been proposed to reduce the power
consumption of sensors to keep the lifespan of a
sensor network as long as possible because usually
recharging sensors’ battery is not easy. An issue that
is highly related to power consumption of a wireless

∗ Corresponding author. Tel: +44 (0) 1206 872449 Fax: +44

(0) 1206 872900
Email addresses: akonst@essex.ac.uk (Andreas

Konstantinidis), kunyang@essex.ac.uk (Kun Yang),

hshwchen@ieee.org (Hsiao-Hwa Chen),

qzhang@essex.ac.uk (Qingfu Zhang).

sensor network is network topology. Unlike wired
networks where the link topology is fixed after the
networks are deployed, wireless sensor networks is
difficult to maintain such a feature because of the
randomness of sensor node distribution at the time
of deployment and the transmission power of each
node. The multi-hop nature of the wireless sensor
network routing renders the unevenness of the power
distribution across sensor nodes in the network con-
cerned, which results in gradual topology change
of the whole network. For instance, the previously
connected network might become partitioned due
to battery exhaust of a critical connecting node. If
the transmission power of each sensor is properly
assigned and dynamically adjusted then a message
from any node should be able to be routed to any
other node in the network. In this case the network
is considered as connected. Connectivity is a basic
requirement for sensor networks. Topology control
assures the basic essential connectivity of a wire-
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less sensor network and also reduces the number of
nodes participating in forwarding and routing pack-
ets without diminishing coverage [2]. Moreover an
efficient deployment of sensors usually offers redun-
dancy in sensor networks coverage [2].

The wireless sensor network connectivity problem
has been intensively researched using various graph
or set theories, with the most commonly used tool
being connected dominating set [3]. While wireless
sensor networks share many similarities with wire-
less mobile ad hoc networks (MANET), the energy
consumption is more a concern in sensor networks
than it is in MANETs. Much research has been car-
ried out on the energy-awareness of sensor networks,
especially from the perspective of energy-efficient
routing [4–6] whose focus is to find a most energy-
efficient route given the current energy status of
each node in the networks with one objective be-
ing prolonging the network’s lifespan. The problem
of minimizing the transmission power of each node
in the network, which results in minimizing the en-
ergy consumption of the network, while keeping its
global connectivity at the same time, is termed as
the minimum energy network connectivity problem
(MENC) by [7]. It has been proved that MENC is
a NP-complete problem [7]. Network connectivity
problem sometimes is called topology control.

Several heuristics have been developed to solve
the MENC problem [7–9]. X. Cheng et al. [8] pro-
pose two heuristics based on a Minimum Spanning
Tree (MST) [10] and a Broadcast Incremental Power
(BIP [11]) method respectively. Based on the above
work, M. Cheng et al. [7] present further improve-
ment to the work in [8], e.g., a minimum incremental
power (MIP) tree algorithm is designed. A. K. Das
[9] uses a heuristic called r-shrink algorithm which
again is based on BIP. BIP is a greedy heuristic pro-
posed by Wieselthier et al. [11]. BIP takes advan-
tage of the broadcast nature of wireless transmis-
sions and computes a broadcast tree. This is actu-
alized by adding nodes once at a time and at each
step the less expensive action is selected. To the
best of our knowledge, no research work has utilized
metaheuristic, for example Genetic algorithms (GA)
[12,13] or Memetic Algorithms (MA) [14–17] which
combines GA with Local Search (LS). This combi-
nation has been proved very successful in dealing
with hard and complex problems [14,15,18–20]. This
paper is to investigate how MA can be applied to a
hard problem in wireless sensor networks. In partic-
ular, we select the MENC problem and research on
how MA is used to obtain performance gain. MAs

[14], as inspired by the cultural evolution, employ
one or more problem-specific heuristics to improve
and/or repair the solutions generated by the genetic
algorithm’s operators (i.e. crossover and mutation).

The ToCMA (Topology Control using Memetic
Algorithm) algorithm proposed in this paper gen-
erates many different solutions and explores in an
effective manner the solution space by using search-
ing and genetic algorithm operators. Then ToCMA
employs different problem enriched algorithms to
maintain the global connectivity of the network. It
checks if the network is strongly connected and if it
is not then ToCMA repairs it. Furthermore, ToCMA
employs an improvement procedure to further min-
imize the overall energy consumption of the net-
work as much as possible. Considering the resource
constrained nature of sensors and the complexity of
heuristic algorithms, ToCMA is designed to run of-
fline and usually on the sink of a sensor network. The
calculated solutions are distributed to the sensors
in a network by the sink node using either multiple
hop broadcasting or direct-communicating broad-
casting.

The rest of the paper is organized as follows. In
Section 2 we describe the network assumptions, the
MENC problem itself and a briefing on memetic al-
gorithm. Section 3 details the proposed algorithm
step by step. Section 4 presents the performance
evaluation of ToCMA against MST. Finally the pa-
per concludes in Section 5.

The main contribution of the paper lies in three-
fold. Firstly, an MA-based new methodology is
proposed for solving energy-aware topology control
problem in wireless sensor networks; secondly, a way
of encoding energy information for each node into a
chromosome is proposed, and finally the proposed
ToCMA has demonstrated its out-performance over
the existing MST solution, amongst other network
benefits.

2. Preliminaries

2.1. Network Assumptions

Since our work is largely inspired by M. Cheng
et al. [7] and indeed is to solve the MENC problem
defined by [7], the network model and energy con-
sumption follow the similar assumptions as these in
[7]. We assume the wireless sensor networks investi-
gated have the following features:
– The sensors in the network are stationary and lo-
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Table 1

Notations

Notation Meaning

n total number of sensor nodes in the sensor network concerned.

pi power assigned to node. i

∆ the maximum power a node can be assigned to.

α path loss exponent 2 ¹ α ¹ 4.

Popt the population of generation t the population considered as the

current population of generation t. Pop0 stands for the initial population.

A population is consisted of a number of chromosomes (or individuals).

µ total number of chromosomes (or individuals) in a population.

ci chromosome i of a population with the index i indicating

the position of the chromosome in the population concerned.

η the maximum number of generations(ToCMA termination criterion).

BestInd set that stores in an increasing order the best µ individuals of all generations.

PopIF
t the set of infeasible solutions of population t.

PopF
t the set of feasible solutions in population t.

PopREP
t the set of µ feasible solutions that have been repaired.

PopIMP
t the set of µ feasible solutions that have been improved.

PopCrs
t+1 a new population t + 1 generated after crossover.

PopMut
t+1 a new population t + 1 generated after mutation.

cated in a two-dimensional plane. It is also as-
sumed that the location of each sensor node can
be obtained after the deployment, by using any
positioning technology. The location information
will be used for calculating the distance between
two sensor nodes.

– Omnidirectional antenna [21] is used for each sen-
sor. This means that a sensor radiates and receives
equally in all directions. If a sensor transmits with
a power level:

pt = ζ × dα (1)

then any sensor within the distance d and a
power threshold ζ can receive the signal. The
path loss exponent α is between 2 and 4 [7].
Suppose there are two nodes ni and nj then the
distance between these two nodes can be calcu-
lated by using the Euclidean distance formula,√

(xi − xj)2 + (yi − yj)2, where (xi, yi) and
(xj , yj) are the coordinates of nodes ni and nj

respectively. The power threshold ζ is considered
a constant and it is ignored since the receivers in
the network have the same power threshold.

– ToCMA uses transmission power in energy calcu-
lation without considering the transmission time.

The same assumption is adopted by [7].
– Sensor nodes can operate in different initial power

levels, with a lower and an upper bound. This con-
sequently leads to asymmetric wireless links and a
directed graph. The asymmetry of the communi-
cation links combined with a request for a differ-
ent initial power level makes complex the problem
and renders the topology control problem more
challenging. Note that only symmetric links are
considered in [8].

2.2. Problem Definition

In a wireless network, if for each node, there is a
route to reach any other node in the same network,
then such a network is regarded strongly connected
[7]. We use the same notations as that in [7] to de-
scribe the energy-aware topology control problem as
follows. Let V denote the set of wireless sensor nodes
and G(V, E) denote the super-graph on V that con-
tains all possible edges if each node transmits at its
maximum transmission power. The edge set E of G
is constructed in such a manner that there is a di-
rected edge from u to v if and only if u can reach
v using its maximum transmission power. Graph G
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sets an upper bound on the maximum connectiv-
ity that a wireless network can have. The topology
control algorithm returns a topology T constructed
from G, i.e., T is a subgraph of G on V . A wireless
sensor network should fulfil the following connectiv-
ity requirement: for any pair of nodes u and v, if
there is a path from u to v in G then there is also a
path from u to v in T .

The formal definition of the MENC problem is
given as follows [7]:

Given a set of wireless nodes V = n1, n2, ..., nn

and the cost function F : (V, V ) → Z, MENC is to
determine a power assignment of nodes P : V → Z
such that:

(i) The induced directed graph T is strongly con-
nected.

(ii) The total energy consumption of the network∑n
i=1 pi is minimized where pi denotes the

power assigned to node ni and is calculated via
Formula (1).

2.3. Memetic Algorithm

A memetic algorithm (MA) is a combination of
a genetic algorithm and a local search [14] and it is
an important optimization approach with successes
in a variety of classical NP-hard optimization prob-
lems [14–17]. It is based on the principle of evolution
operations such as crossover and mutation and the
concept of fitness. It utilizes various problem spe-
cific heuristics to improve and/or repair the solu-
tions generated by evolution.

In MA each solution is usually encoded as an in-
teger string, with each integer representing different
physical parameter that is specific to the problem to
be solved. A solution is termed as an individual in a
population. A population is associated with certain
generation t in the whole evolution of individuals.
The initial populations are usually generated in a
random or controlled manner and then the evolu-
tion of these populations are carried out by the ge-
netic operators such as crossover and mutation. Lo-
cal search is utilized to check the feasibility of each
population, a result of which is that the whole so-
lutions in a generation are divided into two groups:
one comprising the feasible solutions (denoted as
PopF

t ) and the other comprising the infeasible solu-
tions(denoted as PopIF

t ). Then a repair procedure
is invoked on PopIF

t trying to ”repair” them to fea-
sible solutions. Even the feasible solutions can be
further improved to obtain a better fitness. Here fit-

Fig. 1. ToCMA Flowchart

ness is used to express how good a solution is, i.e.,
how close it is to the optimal solution. The proper
definition of a fitness function is as important as ex-
pressing the solution of a problem into an integer
string. A well-defined MA should be able to con-
verge, i.e., the newer solutions are closer to the opti-
mal one. The MA algorithm proposed in this paper
for the MENC problem, ToCMA, follows the above
procedure, which is also illustrated in Figure 1.

Table 1 summarizes a list of the main notations
and their meanings to be used in the rest of the pa-
per. Note that the three terms, individual, chromo-
some, and solution, represent the same meaning but
from different points of view. For instance, a solution
to a problem is represented as an individual, and
from genetics’ perspective an individual is a chro-
mosome which again is composed of multiple genes.

3. ToCMA Algorithm

This section starts with a presentation as to how
the MENC problem is represented by ToCMA,
search space and the fitness function of a solution.
Then it gives a detailed presentation as to how each
step is designed and implemented for the MENC
problem following the ToCMA flow in Figure 1.

4



Fig. 2. Example of power assignment and its encoding scheme

3.1. Genetic Representation

A ToCMA solution to the MENC problem is rep-
resented by a positive integer string where 1) the
integer numbers of the string are the power levels
assigned to each node respectively and 2) the posi-
tion of an integer number in the string represents
the node id. Here it is assumed that all sensor nodes
in the sensor network concerned are numbered from
1 to n where n is the total number of nodes in the
sensor network. From Section 2.1 we know that the
sensors are stationary, i.e., the location of each sen-
sor is fixed after deployment, then the assignment
of power to the sensor nodes become the only factor
that affects the connectivity of the sensor network
(suppose interference is not considered as in [7]). In
GA terminology [13], a solution is represented as a
chromosome. So a solution or a chromosome is rep-
resented as ci = (p1,i, p2,i, ..., pn,i) where ci denotes
the i-th solution in the solution space (or popula-
tion) and pi,j , j ∈ 1, 2, ..., n denotes the power as-
signed to the j-th sensor as far as the i-th solution
is concerned. In general, the composing entities of a
chromosome are called genes. In ToCMA, genes are
the power of sensors. An example of chromosome
(power assignment) encoding from node n1 to nn is
depicted in Figure 2.

The whole solutions (or chromosomes)constitute
the solution space (i.e., the search space [15])SS =
{ci|i ∈ {1, 2, ..., µ}} . In ToCMA it is assumed that
there are µ solutions in each generation. If we denote
the whole population in generation t as Popt then
we have Popt = {c1, c2, ..., cµ}. This search space is

to be used by ToCMA to find a best solution in the
current population.

3.2. Fitness Function

The quality of each solution is measured by a fit-
ness function [22]. In ToCMA, the fitness function
of a solution is defined as the sum of the power as-
signed to each gene (i.e., sensor node), namely:

f(ci) =
n∑

j=1

pj,i (2)

To the MENC problem, the smaller a solution’s
fitness value is the better the solution is. An opti-
mal solution is defined as a solution that has min-
imal f(ci), namely, f(coptimal) = min(f(ci), i =
1, 2, ..., µ) . The fitness function is to be used as a
criterion when selecting a chromosome.

3.3. Population Initialization

ToCMA starts by creating an initial population.
In general, there are two issues to be considered
when carrying out population initialization of a ge-
netic algorithm: the initial population size and the
procedure to initialize the population [22]. Firstly, it
is generally true that the bigger the population size
is the more chance and faster that a good solution
can be found. However, a large population demands
more computation and memory. Secondly, there
are two ways to generate the initial population:
heuristic initialization and random initialization.
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ToCMA adopts a random process to generate its
initial populations due to the speediness and less
complexity of this method. However, ToCMA can
equally take benefit of more intelligent initialization
method [23,24] but at a cost of more computational
complexity. A random number generator is used by
ToCMA to generate pi, 0 ≤ pi ≤ ∆, for each sensor
node i where ∆ is the maximum power a node can
be assigned to. The following steps detail the pop-
ulation initialization procedure of ToCMA.

|ToCMA Population Initialization|
Step 1 Parameter setting: Set g,∆,n = the num-
ber of nodes in the network,M ,µ;
Pop0 = ∅; i = 0.
Step 2: Randomly pick numbers from 0 to ∆ and
assign them to the n nodes of the network. Create
an integer string ci using the following procedure:

for j = 1 to n do
get the power assigned to node ni and put
it at the j-th position in the string ci;
Pop0 ← Pop0 ∪ ci;
i ← i + 1;

Step 3: Repeat µ times the step 1 to generate the
initial population Pop0.

The computational time complexity of the popu-
lation initialization is O(µ.n).

By this point, based on the location and the power
of the nodes, a graph Gi can be created correspond-
ing to each ci. The above population initialization
procedure does not guarantee the feasibility of each
Gi, i = 1, 2, ..., µ in Pop0. As such a checking pro-
cedure, as part of local search procedure, has to get
involved.

3.4. Local Search:Checking, Repairing and
Improvement

3.4.1. Checking Function
A checking process is to check if a solution is fea-

sible. In terms of ToCMA, it is to check if the graph
generated based on this solution gives a directed
strongly connected network. Checking constitutes
the first step of local search procedure. Based on
the analysis of sensor network topology, the follow-
ing four cases as depicted in Figure 3 might cause
an infeasible network topology.

In Case #1, as shown in Figure 3(a), there is
one or more totally isolated node in the network
represented by graph g, for example, the node cir-

cled. This case can be formally expressed as: ∃ni ∈
V (g), inDegree(ni) = 0∧outDegree(ni) = 0 where
V (g) denotes the set of the nodes in graph g and
inDegree(ni) and outDegree(ni) stands for the in-
degree and out-degree of node ni respectively. Such
a solution is put into the infeasible set of the current
generation t, i.e.,
PopIF

t ← c = {g(V, E)|∃ni ∈ V, inDegree(ni) = 0
∧outDegree(ni) = 0}

In Case #2, as shown in Figure 3(b), there are
one or more one-way isolated groups of nodes in
the network represented by graph g, for example
the three groups of nodes g1,g2,g3 circled. The first
group, g1, is composed by n0, n1, n2, n3, n4, the sec-
ond group, g2, by n5, n6, n7, n8 and the third group,
g3, by n9, n10, n11, n12. In this case one group can
reach the other groups but it cannot be reached
by them, while another one can be reached by the
other groups but it cannot reach them. For exam-
ple, in Figure 3(b), g1 can reach g3 but it cannot
reach g2, where at the same time g1 is reachable by
g2 and it is not reachable by g3. This case is for-
mally expressed as:
1) these three graphs do not share any common
node, i.e.,
V (g1) ∈ V (g) ∧ V (g2) ∈ V (g) ∧ V (g3) ∈ V (g) ∧
V (g1)∩V (g2)∩V (g3) = 0 (we denote this condition
as C1); and
2) there is only one link connecting each sub-graph,
(
⋃

x1∈V (g1)
neighbour(x1))∩(

⋃
y∈V (g2)

neighbour(y))
= 1 ∧ (

⋃
x2∈V (g1)

neighbour(x2)) ∩ (
⋃

k∈V (g3)

neighbour(k)) = 1 (we denote this condition as C2).
Any solution falling into this Case is also put into
the infeasible set of the current generation t, i.e.,
PopIF

t ← c = {g(V, E)|∃g1, g2, g3, C1 ∧ C2} A spe-
cial occasion of this case is when there is a one
way isolated node instead of a group of nodes as it
shown in Figure3(b) by nodes n13 and n14.

In Case #3, as shown in Figure 3(c), there is one
or more loop in the network represented by graph
g. For example, there is a loop between node n1

and node n2. For directed graph, this means n1

and n2 are each other’s only next-hop neighbouring
node. This case is formally expressed as: ∃ni, nj ∈
V (g), (nj ∈ neighbour(ni) ∧ outDegree(ni) ==
1) ∧ (ni ∈ neighbour(nj) ∧ outDegree(nj) == 1)
where neighbour(ni) means the one-hop neighbours
of node ni. Any solution falling into this Case is also
put into the infeasible set of the current generation
t, i.e.,
PopIF

t ← c = {g(V, E)|∃ni, nj ∈ V, (nj ∈
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Fig. 3. Cases of Infeasible Solutions

neighbour(ni) ∧ outDegree(ni) == 1)
∧(ni ∈ neighbour(nj) ∧ outDegree(nj) == 1)}

In Case #4, as shown in Figure 3(d), partition
occurs in the network. For example, there are two
sub-networks in the graph, one composed of nodes
n0, n1, n2, n3, n4 and the other composed of node
n5, n6, n7, n8 and there is no edge linking these two
sub-networks. This case is formally expressed as:
there are at least two sub-graph g1, g2 where the
following conditions hold:
1) these two graphs do not share any common node,
i.e.,
V (g1) ∈ V (g) ∧ V (g2) ∈ V (g) ∧ V (g1) ∩ V (g2) = ∅
(we denote this condition as C1); and
2) there is no link connecting these two sub-graphs,
i.e., they are not each other’s neighbours:
(
⋃

x∈V (g1)
neighbour(x))∩(

⋃
y∈V (g2)

neighbour(y)) =
∅ (we denote this condition as C2).

Actually Case #1 is a special case of Case #4.
Any solution falling into this Case is also put into
the infeasible set of the current generation t, i.e.,
PopIF

t ← c = {g(V, E)|∃g1, g2, C1 ∧ C2}
Any other solutions, which are feasible solutions,

are put into the feasible population set:PopF
t . The

checking function of ToCMA works as follows:

Input: a set of µ chromosomes each representing
a possible solution, i.e.,Popt = c1, c2, ..., cµ

Output: two sets of chromosomes: PopIF
t

representing a set of infeasible solutions and
PopF

t representing a set of feasible solutions.
fori = 1 to µ do

if ci ∈ Popt satisfies Case #1, or Case #2, or
Case #3, or Case #4 then

PopIF
t ← ci;

else
PopF

t ← ci;

All infeasible solutions are to be forwarded to a
repairing process for repair and the feasible solutions
go directly to the improvement process.

The computational time complexity of the check-
ing algorithm is O(µ.n2).

3.4.2. Repair Function
As discussed in the previous sub-section, four

cases cause an infeasibility of a solution. Repair
function is provided for each of them.

Case #1: In this case, the repairing heuristic of
ToCMA firstly discovers the origin of infeasibility,
e.g., node ni. Secondly it finds the node’s nearest
neighbour. Thirdly, it measures the distance to
that neighbour and calculates the necessary power
needed by ni to be able to communicate with that
neighbour. And finally the repairing heuristic as-
signs this power value to ni.

Case #2: In this case,the heuristic firstly discov-
ers the one way isolated groups, e.g., g1, g2, g3. Then
it tries to find a node ni1 in group g1 which is the
nearest neighbour of a node nj in group g2 and also
a node nk in group g3 which is the nearest neigh-
bour of a node ni2 in group g1. Finally, it calculates
the power needed for ni1 to communicate with nj

and assigns this power value to ni1 and the power
needed for nk to communicate with ni2 and assigns
this power value to nk. In the special case of Case
#2 the heuristic discovers the origin of infeasibility,
e.g., node ni, and it’s nearest neighbour. Then, it
measures the distance to that neighbour and calcu-
lates the necessary power needed by ni to be able to
communicate with that neighbour. Finally the re-
pairing heuristic assigns this power value to ni.

Case #3: In this case, the repairing heuristic
firstly discovers the involved nodes. For each in-
volved node ni, it carries out the following steps:
1) it tries to find other next-hop neighbours and
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selects the one nj which is nearest to it; 2) it calcu-
lates the power needed for ni to reach nj ; 3) then it
assigns this power value to ni.

Case #4: In this case,the heuristic firstly discov-
ers the partitioned groups, e.g., g1, g2. Then it tries
to find a node nj in group g1 which is the nearest
neighbour of a node ni in group g2. Finally, it calcu-
lates the power needed for ni to communicate with
nj and assigns this power value to ni. Then commu-
nication from g2 to g1 is set up. In the same way the
communication from g1 to g2 can also be set up. Re-
peat this procedure to all partitioned groups until
network connection is resumed.

The above methods are collectively implemented
in repair(ci). The overall procedure of the repair
function is described by the following pseudo code.

Input: a set of x chromosomes each representing
an infeasible solution,i.e.,PopIF

t = {c1, c2, ..., cx}
and a set of y chromosomes each representing a
feasible solution,i.e.,PopF

t = {c1, c2, ..., cy},
wherex + y = µ.
Output: a set of µ chromosomes each
representing a feasible solution,i.e.,
PopF

t = {c1, c2, ..., cµ}.
while PopIF

t 6= ∅ do
select ci ∈ PopIF

t ;
cF
i ← repair(ci);

PopF
t ← PopF

t ∪{cF
i }; // add the new solution

into the feasible solution set
PopIF

t ← PopIF
t −{ci}; // remove the repaired

solution from the infeasible solution set.

In the worst case the time complexity of the repair
algorithm is O(PopIF

t )

3.4.3. Improvement
The feasible solutions are further improved by

ToCMA. The purposes are mainly twofold as far as
ToCMA is concerned. Firstly it is to provide reme-
dies to the fact that the random power assignment
used for population initialization might assign un-
necessary high power to certain nodes as such lead-
ing to unnecessary power consumption. Secondly it
is to avoid the situation where direct connections
are too frequently used whereas there is an indirect
route between two nodes. To this end, ToCMA is
particularly interested in the following two types of
improvements, as illustrated in Figure 4(a) and (b)
respectively.

Improvement #1, as illustrated in Figure 4(a), oc-
curs when a node’s current power pi is greater than

the power needed to reach its farthest neighbour nj .
Denote the distance from ni to nj as d, then the
maximum power requested for ni is pRQ

i = dα ac-
cording to Formula (1). If pi > pRQ

i then pRQ
i is

used to replace pi, namely, the power of this node is
decreased to the power level that is just enough to
reach its farthest neighbour(s).

Furthermore, if there is a route between a pair
of indirectly connected nodes: ni and nj then there
is a chance to take the benefit of Improvement #2.
Improvement #2, as illustrated in Figure 4(b), oc-
curs when the power needed for a node ni to reach
directly its farthest neighbour nj is more than the
power needed if ni follows a route r to nj . For in-
stance, in Figure 4(b), the node’s current power pi

needed to reach its farthest neighbour nj , directly,
is greater than the power pr needed to reach nj

through an intermediate node nk. Denote the dis-
tance from ni to nj as di,j , the distance from ni to
nk as di,k and the distance from nk to nj as dk,j .
Then pi = da

i,j , the power needed for ni to reach nk

is pi,k = dα
i,k and the power needed for nk to reach

nj is pk,j = dα
k,j . Thereby the total power needed

by route r(ni, nk, nj) is pr = pi,k + pk,j . If pr < pi

then pi is replaced by pi,k, namely, the power of
this node is decreased to the power level that is
just enough to reach the intermediate neighbour of
less power consuming route. Note that by following
a less energy consuming shortest path from sensor
ni to sensor nj through an intermediate sensor nk

instead of using the direct longest path form ni to
nj , extra delay might be introduced in the sensor
network. A right balance or trade-off needs to be
found considering the features of the application
(e.g., whether it is more time critical or more en-
ergy critical) and the status of the network (e.g.,
the energy distribution). This paper focuses more
on the energy-efficiency side. Its impact on delay
needs to further investigated in our future work.
The improvement function works as follows:

Input: a set of µ chromosomes each
representing a feasible solution,
i.e.,PopF

t = {c1, c2, ..., cµ}
Output: a set of µ chromosomes each
representing a possibly improved feasible
solution, i.e.,PopIMP

t = {cIMP
1 , cIMP

2 , ..., cIMP
µ }.

Step 1: set up loop, i.e., for each chromosome
ci ∈ PopF

t , i = 1 to µ do
Step 2: improve each chromosome separately,
namely, carrying out the following procedure:
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for each gene gj in ci, j = 1 to n do
Step 2.1: carry out Improvement #1 on
gj :g1

j = IMP1(gj);
Step 2.2: carry out Improvement #2
on the output of Improvement #1: g2

j =
IMP2(g1

j );
Step 2.3:update the chromosome:replace
gj with g2

j in chromosome ci

Step 3: use the improved solution ci (also denoted
as cIMP

i for expressing clarity) to replace the origi-
nal ci in the solution set PopF

t (for expressing clarity
the new solution set is denoted as PopIMP

t ).
Step 4: return PopIMP

t .

The computational time complexity of the Im-
provement algorithm is O(µ.n).

The overall computational time complexity of the
local search in the worst case is O(µ.n2).

3.5. Population Update and ToCMA Termination

After local search, which involves in checking, re-
pairing and improvement as discussed above, all the
solutions are feasible and are kept in PopIMP

t . This
PopIMP

t keeps only feasible solutions for one par-
ticular generation. ToCMA maintains another set
of feasible solutions (also of length µ) that collects
the best solutions across all generations. We denote
this set as BestInd. A solution is evaluated based
on its fitness value according to formula (2). The
smaller a solution’s fitness value is the better the
solution is because in ToCMA the fitness represents
the power consumed. The solutions in BestInd will
be used by GA operators to generate next genera-
tion populations. Using best parents across previous
generations to create the next generation rather
than only the current generation (i.e., PopIMP

t )
increases the chance of creating best solutions in
the next generation. The focus of this sub-section
is how to generate and update BestInd to its best
solutions, which is described as follows.

Step 1: initialize BestInd: BestInd = ∅;
Step 2: first generation: if t == 0 then

Step 2.1: BestInd = PopIMP
0 ;

Step 2.2: Sort the solutions in BestInd in an
increasing order of their fitness values; get the
last solution (or chromosome) into cLAST .
(Step2.3: GA operation to generate next gener-
ation)

Step 3: later generation: if t! = 0 then

Using the solutions from the current generation
to update BestInd.
for each chromosome cIMP

i ∈ PopIMP
t , i = 1

to µ do
if f(cIMP

i ) < f(cLAST ) then use CIMP
i

to replace last chromosome (namely the
worst) in the BestInd.
Sort the solutions in BestInd in an increas-
ing order of their fitness values;

Step 4: termination checking based on the number
of generations

if t == η then terminate;
else using GA operation to generate next gen-
eration; go to Step 3.

Several population replacement strategies have
been proposed in the literature [25]. ToCMA uses
the most common one, the elitism strategy. A solu-
tion from the current generation is used to update
BestInd only when it is better than the worst one
in BestInd. And it is always the worst solution in
BestInd that is replaced. At the end of each gen-
eration, this strategy ensures that only µ chromo-
somes with best fitness value are kept in BestInd
and survive to get involved in the creation of next
generation via genetic operator

The algorithm terminates after η generations. If
the termination criterion is not met, the GA’s op-
erators manipulate on BestInd to generate the new
population.

The time complexity of the algorithm is O(logµ),
where µ is also the length of BestInd.

3.6. Genetic operators:Selection,Crossover and
Mutation

Three steps are needed in order to generate a new
generation while keeping its high quality and diver-
sity: selection, crossover and mutation.

3.6.1. Selection
The selection operator is to improve the average

quality of the population by giving the high-quality
chromosomes a better chance to get copied into
the next generation [22]. ToCMA uses the tourna-
ment selection [12] as its selection operator. The
reason why this particular method is selected is
because it only needs a preference ordering be-
tween strings as such much simpler to be applied to
resource-constrained wireless networks such as sen-
sor networks. It is efficient to code and the selection
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Fig. 4. ToCMA Improvement Function

pressure is easily adjusted. The preference ordering
in ToCMA is already carried out when generating
BestInd.

In order to utilize the tournament selection, the
tournament size m needs to be decided. In ToCMA
the tournament size m is equal to (µ/2) + 1(note
that if µ is an odd number then the fraction part
is ignored). A constant value for m, which is the
case in ToCMA, renders a simpler operation of the
tournament selection algorithm [12]. These m chro-
mosomes are the first m best individuals stored in
BestInd. The purpose of the selection operator is
to get a pair chromosomes which are forwarded for
further crossover operation.

The selection operator works as follows:
Input: a set with the m best integer strings
Output: a pair of integer strings.
Step 1: Set the parameter m equal to (µ/2) + 1.
Step 2: Select the m first chromosomes from
BestInd, which are also the m best chromosomes.
Step 3: While the size of new population Popt+1

is less than µ, run the ”tournament” and select the
best two individuals based on their fitness.

Step 3.1: Forward this pair of chromosomes to
the crossover operator as parents.
Step 3.2: Randomly select one of the selected
pair and delete it from the tournament.

The computational time complexity of the algo-
rithm is linear to µ.

3.6.2. Crossover
In this phase ToCMA algorithm utilizes a fast and

simple technique, the single-point crossover opera-
tor, as illustrated in Figure 5.

This operator involves two steps: 1) the selection
of the crossover site 1X, and 2) the generation of
the two new chromosomes (also called offsprings).

Fig. 5. Single Point Crossover

The crossover site is selected randomly in the inter-
val [1, n]. Offsprings are generated by swapping the
characters between positions 1X + 1 and n of the
parents (the pair selected earlier by the selection op-
erator). For example, the following two parent chro-
mosomes are selected - each of length n = 7:

c1 : 1 3 4 6 | 9 2 5
c2 : 8 1 7 5 | 3 2 8

Let the crossover site be 4. The two substrings
between 5 and 7 are swapped and the two substrings
between 1 and 4 remain the same. The two offsprings
generated are as follows:

o1 : 1 3 4 6 | 3 2 8
o2 : 8 1 7 5 | 9 2 5

The crossover will continue until a new popula-
tion PopCRS

t+1 is generated with µ offspring. This
is also a linear algorithm. The crossover operator
works as follows:

Input: a pair of integer strings as parents
Output: a pair of integer strings as offspring.
Step 1: Accept the pair of chromosomes from the
selection operator and set them as the parents.
Step 2: Randomly generate a number between the
interval [1, n] and set it as the crossing site 1X.
Step 3: Swap the characters between positions
1X + 1 to n of the parents to generate the two off-
spring.
Step 4: Add the two offspring in the set of the new
population PopCRS

t+1 .
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The problem with crossover is that all the pop-
ulations generated tend to gather together as such
covering only a limited area in the search space. In
order to increase the diversity of the population and
thereby increasing the chance of finding better solu-
tions, mutation is further utilized after crossover.

3.6.3. Mutation
The mutation operator is applied to all offsprings

of the new population PopCRS
t+1 . This operator sim-

ply selects randomly g genes in each offspring and
randomly changes their value in the power interval
[0,∆]. The number of genes that will be mutated is
g = bn/2c (round the fraction up if n is an odd inte-
ger), i.e., half of the nodes. This number is chosen to
be big enough to increase the diversity of the pop-
ulation as much as possible in order to compensate
the diversity loss in crossover operator and the local
search process [14].

For example, an original offspring of length n = 7:
Original offspring : 1 3 4 6 3 2 8

The number of genes to be mutated is g =
bn/2c = 4. Let the positions of genes that are ran-
domly selected for mutation be (1, 3, 4 and 7). Then
after mutation we have:

Mutated Offspring : 5 3 7 8 3 2 1
After the mutation of all µ individuals of the

new population PopCRS
t+1 , a new mutated popu-

lation PopMUT
t+1 is created. This new population

PopMUT
t+1 will then be forwarded to the local search

heuristic discussed above to go through check-
ing/repairing/improvement again until the termi-
nation criterion is met.

The mutation operator, which is a linear process,
works as follows:
Input: a set of µ chromosomes. PopCRS

t+1

Output: a set of µ chromosomes.PopMUT
t+1

Step 1: Pick each offspring from the new population
PopCRS

t+1 one by one.
Step 2: For each offspring oi ∈ PopCRS

t+1

Step 2.1: Calculate g = bn/2c and randomly
choose g genes of the current chromosome to
change their values.
Step 2.2: Replace the current values of the se-
lected g genes with a randomly selected number
within the interval [0,∆].

Step 3: Add the mutated offspring to the set
PopMUT

t+1 .

4. Evaluation Results and Analysis

In this section ToCMA is compared against MST
(minimum spanning tree) in terms of total energy
consumption while maintaining network connectiv-
ity. MST is selected because it is a simple and neat
solution to the MENC problem and it is also pop-
ularly selected as a benchmark in topology control
problem solving [3–5,26].

4.1. Experimental Design

A spanning tree, T (V, E′), is a subgraph induced
from a supergraph G(V, E), where V is a set of nodes
common for both graphs, E is a set of links in the
supergraph and E′ ∈ E is a set of links in the sub-
graph. The number of links in the subgraph is equal
to |E′| = |V | − 1. A graph may have more than one
spanning trees. From all these spanning tree, there is
one that has minimum cost, based on the sum of the
weight on links. This is called the minimum span-
ning tree T of graph G [10,11]. The same method
as that in [7] is utilized to calculate the energy con-
sumption of MST.

The number of chromosomes created at each gen-
eration is µ = 30 and the number of nodes n used
in different networks varies from 10 to 100. ToCMA
employs a tournament selection with tournament
size m= 16. A single point crossover is then per-
formed to each pair of chromosomes. The crossing
site is randomly chosen from the interval [1, n]. A
mutation is carried out to all offspring with muta-
tion rate being bn/2c. Each node is randomly as-
signed a power within the interval [0, 500α], where
the path loss exponent α = 2. The best µ = 30 so-
lutions from all the generations are stored in an in-
creasing order in BestInd. Each experiment is ter-
minated when the number of generations reaches the
maximum number of η = 15.

A number of stationary nodes were randomly de-
ployed on a two-dimensional plane (500x500), so the
power that could be randomly assigned in ToCMA
at the beginning is between the boundaries of 0-
500α. The size of the network (number of nodes) was
the same for both algorithms and the fitness func-
tion (total energy consumption of the network) is
then measured.

For small networks, a search is performed for both
MST and ToCMA, the results of which are shown in
Table 2. This table shows a clear performance win
of ToCMA over MST. And for cases when n=3-6
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ToCMA can approach the optimal solutions.

Table 2

Comparison of MST and ToCMA for Small Networks

Number of nodes ToCMA MST

3 915 960.

4 1000 1070.

5 1550 1605.

6 1020 1200.

7 2555 2978.5.

8 2848 2988.

9 3208.5 3305.

10 3710 3970.

For big networks of large number of nodes, simu-
lation is used. We run MST and ToCMA algorithms
separately for networks of different density and draw
the results in Figure 6. Figure 6 gives the total en-
ergy consumption of the best solutions found by each
algorithm. The energy consumption used by y-axis
is represented by a ratio of eB to ω . eB stands for the
total energy consumption of the best solution and is
calculated via fitness function (Formula 2).ω stands
for the total energy consumed when each node uses
its maximum power (∆), i.e., ω = n × ∆α where
α = 2. If we denote the ratio as ra then we have

ra = eB/ω =
∑

i∈BestSol

pi/(n×∆α) (3)

It is observed that MST and ToCMA keep a sim-
ilar curve shape as the number of nodes in the net-
work increases. Furthermore, the total energy does
not change too much as the node number increases
from 10 to 100. This is because increased node den-
sity reduces the communication distance between
neighbouring nodes and as a consequence reducing
the transmission power of each node. Note that in
most cases the ToCMA algorithm outperforms MST
algorithm.

This result is also depicted by the following exam-
ple as illustrated in Fig. 8. In this example a random
topology is created and the links between the nodes
are calculated based on the location of the nodes
and their power assignment.

Figure 7 exemplifies how ToCMA outperforms
MST using a specific network topology. In Figure 7
(a) MST creates a strongly connected network by
using in an increasing order the shortest links of the
network. This is indicated by the bold lines. The
dotted lines indicate the links that are not used. The

Fig. 6. Comparison of MST and ToCMA for Big Networks

Fig. 7. An Example

total energy consumption by MST is:
eB(MST ) =

∑8
i=1 pi = 42 +42 +42 +52 +12 +52 +

52 + 52 = 149
Similarly, for ToCMA, there is:
eB(ToCMA) =

∑8
i=1 pi = 12 + 12 + 12 + 52 + 52 +

52 + 52 + 52 = 128 .
Apparently, eB(ToCMA) < eB(MST ).

4.2. Other Benefits & Discussions

Figure 6 indicates a narrow win of ToCMA over
MST. In addition to the better quality of solution
that ToCMA can offer, ToCMA can also provide
some other benefits.
Table 3

The BestInd set (for α=2)

ToCMA can take advantage of the information
stored in BestInd that is generated during update
function (refer to sub-section 3.5) for a variety of
purposes. In this set the best solutions are stored in
an increasing order of total power consumption, as
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illustrated in Table 3. Apart from being effectively
used for genetic operations, BestInd, when stored
in the sink of the sensor network, can be utilized, for
example, for fault tolerance purpose. Table 3 illus-
trates how it works. For example, if for any reason a
sensor node has to operate with less power than the
one assigned by the best solution c1, then the sink
can search in BestInd to try to find another best
solution that satisfies this new power constraint re-
quirement. And then the sink broadcasts this solu-
tion to all the sensors in the network to easily ac-
commodate a sudden change in the network. For
instance, after solution c1 has been deployed, sud-
denly node n4 has to operate with a power p4 ≤ 3α,
then ToCMA can easily locate the best solution for
this situation, i.e., c4. This can potentially reduce
the chance of network partitioning.

In order to check that a solution provides a
strongly connected network, the checking func-
tion in Section 3 actually needs to guarantee a
route, either directly connected or via intermedi-
ate nodes, between any pair of nodes in the net-
work. This routing information can be well stored
alongside the power information (for instance, in
an extended BestInd table), and as such evolves
cross generations. With this routing information,
route discovery process can be much simplified.
An energy-aware routing algorithm supported by
ToCMA and its performance analysis against other
mainstream energy-aware routing algorithms are
our near-future work. Though being more compu-
tationally complex than MST, the outputs from
ToCMA can be utilized for many other purposes
than energy consumption efficiency to the overall
benefit of the wireless network as a whole.

5. Conclusions and Future Works

In this paper, we have proposed an alternative ap-
proach to tackle the MENC problem in wireless sen-
sor networks, which utilizes modern heuristics and
more precisely memetic algorithm. The proposed
ToCMA explores in an effective manner the solution
space by using a combination of the genetic algo-
rithm operators and the local search technique. It
employs repair and improvement methods to refine
solutions. The concrete MA solutions are guided by
problem-specific features such as network connectiv-
ity, avoiding loop etc. Simulation results have shown
that better solutions can be obtained by ToCMA
than MST. ToCMA also demonstrated its strength

in generating initial routing information and fault
tolerance and robustness.

Based on the encouraging results of this paper, we
will further investigate how an intelligent initializa-
tion and smarter local search mechanism will make
impact on quality solutions and the overall perfor-
mance of the algorithm. To encode routing informa-
tion into chromosome on top of power value and to
design energy-constrained routing algorithm using
MA is also within our future work. Currently the
choice of mutation position in a chromosome is made
randomly. A guided mutation based on the feature
of the network topology and energy assignment is
to be investigated. To further reduce the computa-
tional complexity is also the next-step target when
accommodating the above future research plans.
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